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A Potentially Ideal Probe 
into Br0wnian Motion 
L. G u n t h e r  1 a n d  J. Z i t k o v a - W i l c o x  1 

Received July 1, 1974 

We calculate the Mtissbauer spectrum of nuclei embedded in spheres of 
radius on the order of 1/~m which are suspended in a liquid. We demon- 
strate that the M6ssbauer effect is an ideal means for testing the deduc- 
tions based upon a generalized Langevin equation which takes into account 
the effects of acceleration memory on the force and torque of the liquid on 
a sphere and for studying, generally, the detailed statistical dynamical 
behavior of Brownian particles. The spectrum is expressed in terms of an 
integral over an integrand consisting of standard functions. Experimental 
desiderata are discussed and a list of sample experimental parameters 
given. 
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1. I N T R O D U C T I O N  

In 1967 Alder  and Wainwright  (1~ per formed  compute r  s imulat ion experi- 

ments on a " g a s "  o f  hard  spheres and found that  the velocity autocorre la t ion  

funct ion behaved asymptot ical ly  as t -a/2 as the t ime t approached  infinity. 

To some, this result  was quite unexpected insofar  as it disagreed with the 

s tandard  classical behavior  o f  Brownian mot ion  found  in s tandard  treatises, (2~ 
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which predicts exponential long-time decay. Widom ~3~ and Zwanzig and 
Bixon ~4~ subsequently pointed out that the computer result could be under- 
stood on the basis of  an extension of classical results to the case when the 
mass density of  a Brownian particle p0, which is typically on the order of  
1 g/cm 3, is comparable to the fluid mass density p, rather than much larger, 
as is required for the classical result to obtain. Hauge and Martin-L6f, ~5~ 
in a statistical hydrodynamical paper on the problem, have noted that this 
result was conjectured by Lorentz ~6~ in 1911-12. We feel quite incompetent 
to judge who was first with what in this problem and leave it to the historians 
to study its history. In any case, quite a number of  theoretical papers have 
appeared on the subject since the Alder and Wainwright paper. ~7-11~ 

What  is annoyingly lacking is experimental confirmation of the predicted 
behavior of  the velocity autocorrelation function in a real system of Brownian 
particles. What  is being tested is the assumption that linearized hydrody- 
namics of  a dense viscous fluid fully describes the fluctuations in the velocity 
of  a Brownian particle. We have every reason to believe in the validity of  this 
assumption. What  makes the search for an experimental probe of Brownian 
motion exciting is the prospect of being able to observe the detailed behavior 
of a particle which is on the order of  1/~m in diameter and suspended in a 
fluid. This range of  particle size--which lies midway between the " fu l ly"  
macroscopic and atomic domains--seems to have been neglected by physi- 
cists. Such knowledge could be very valuable in many areas of  science and 
technology. Foremost  on our minds at the moment  are biophysics, computer 
science, and pollution control. 

The purpose of this paper is to demonstrate that the MSssbauer effect 
may be the ideal method 2 to examine the detailed behavior of  a particle 
undergoing Brownian motion. The reasons for our optimism will become 
apparent  in the course of  this paper. Since we have a complete theory of this 
motion, we are not content to obtain merely the width and peak magnitude 
of the spectrum. We expect to obtain a detailed comparison of the experi- 
mental and theoretically predicted M6ssbauer spectra. 

The system we will be considering is a suspension of spherically shaped 
particles of  radius R on the order of  1/zm and mass m, containing a spheri- 
cally symmetric distribution of M6ssbauer nuclei, in a viscous liquid of  mass 
density p and viscosity ,~. We will treat the fluid as if it were incompressible 

2 Harris(12) has proposed the study of the decay of an electric current of ions in solution. 
This method is quite difficult and, given available experimental techniques, could at 
best reveal only the long-time behavior of the velocity autocorrelation function. 
Second, it is not so clear to what extent an ion can be treated as a Brownian particle. 
In particular, it seems clear that its motion on a short time scale--less than the order of 
the characteristic time tl of the text--is not describable by the generalized Langevin 
equation. 
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since in the significant regime of frequencies oJ ~ 6rr~R/m (which is on the 
order of the inverse of  the characteristic time for velocity decay) the penetra- 
tion depth (13~ (2r//pco) 1/2 of the velocity flow into the fluid is much less than 
the distance csm/67nTR, where cs is the speed of  sound in the fluid. We will use 
linear hydrodynamics since the typical Reynolds number is on the order of 
pR(kT/m)~12/~l, where k is Boltzmann's constant and T is the absolute tem- 
perature, a The suspension will be assumed to be so dilute and free from 
electric charge effects that we will neglect correlations between the particles. 
Finally, along with previous treatments of this problem, we will assume that 
" s t i ck"  boundary conditions hold--namely that the tangential velocity 
component of  the particle at a point on its surface is equal to that in the fluid. 

In Section 2 we briefly review the theory of the generalized Langevin 
equation--generalized to include the effects of particle acceleration on the 
force of the fluid on the particle--and its connection with the velocity auto- 
correlation function and comment on the reasons for the reliability of the 
theory. A key step in the calculation of the MSssbauer spectrum involves a 
major assumption--whose validity we discuss--namely that the Fourier 
components of the velocity fluctuations of a particle are Gaussian distributed. 
We end with a summary of the corresponding results regarding the angular 
velocity autocorrelation function, which also contributes to the M6ssbauer 
spectrum. In Section 3, we develop the theory of the M6ssbauer spectrum of 
a suspension of such Brownian particles. We end up with an expression for 
the MSssbauer spectrum in terms of a Fourier transform of a function which 
is easily calculated by a computer. Finally, we discuss experimental desiderata. 

To help give the reader a feeling for the important parameters in the 
theory, we have listed the basic and derived parameters in Appendix A, along 
with a Sample set of their values. In Appendix B we provide some of the 
essential properties of the complex error function w(z), (t4~ a function which is 
of fundamental importance in the theory--analogous to the exponential 
function in the classical Langevin equation. 

2. THE V E L O C I T Y  A N D  A N G U L A R  V E L O C I T Y  
A U T O C O R R E L A T I O N  F U N C T I O N S  

The generalized Langevin equation 4 for a solid sphere moving in a fluid 
is given by 

mb(t )  = -- 6rr~TRv(t ) - 2rrpR3b(t) 

- 6 R 2 ( , ~ 0 )  "~ c l t '~ ( t ' ) / ( t  - t ' )  ~ + Foxt(t) + f ( t )  (1) 

a This point was made by Chow and Hermans3 9~ 
4 See Ref. 3 and, for a general treatment, Kubo. (7~ 
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where v(t)  is the velocity component of the sphere at time t and b(t) is its time 
derivative. The first three terms represent the force of the fluid on the sphere 
calculated directly from the linearized Navier-Stokes equation (la) of hydro- 
dynamics. The first of these terms is the Stokes force, while the second and 
third are neglected when the fluid is dilute (so that p ~ 0), leading to the 
classical Langevin equation. The second term is a result of the mass of fluid 
dragged by the ,sphere and the third term is the "'acceleration m e m o r y "  
term, which takes into account the fact that it takes time for the fluid to 
develop a steady-state flow pattern for a given velocity. It vanishes when the 
velocity is constant and is a force which depends upon the entire history of the 
motion of the sphere. It is interesting, from a partly mathematical and partly 
philosophical point of view, that there is no physically meaningful solution to 
the homogeneous equation obtained by setting f + F = 0 in the equation. 
[This is not the case when the memory term is absent, in which case a physi- 
cally significant homogeneous solution exists but can be replaced by an in- 
homogeneous solution which represents the response of v(t)  to an external 
force; cf. below.] The function Fext(t) is any external force which may be 
acting on the sphere (e.g., a gravitational force) and is also present in the 
hydrodynamical description of the motion. We will henceforth set Fext = O. 
The function f ( t )  is the fluctuating force of the fluid on the sphere, present 
whether or not the sphere is in motion. It introduces fluctuations into the 
equation and its average over time vanishes. Henceforth, we will also assume 
that the fluid and sphere are in equilibrium, so that, in addition, the thermal 
average velocity (v) vanishes. The inhomogeneous solution (the only 
physically significant solution) to Eq. (1) is 

f' 
v(t)  = dr' (~(t - t ' ) f ( t ' )  (2) 

where ~(t) is the response function obtained by Laplace-transforming Eq. (1) 
and using the fact that 

{ 1 } = ( r r t ) _ l j 2 + z w ( _ i z V ~  ) (3) ILT ~ _ z 

where ILT symbolizes the inverse Laplace transform, z is the complex number 
x + iy, and w is the complex error function (cf. Appendix B). In terms of the 
parameters A = p/2po, e~ = ~[A/(1 -t- A)] 1/2, m* = m(1 + A), tl ==- m*/6~r~R, 
r = t/t1, and 0 - sin- ~ ~, we obtain 

q~(t) = (1/m*){Re w[e~~ - tan 0 Im w(ei~ (4) 

The time tl is the characteristic time of velocity fluctuation and (cf. Appendix 
A) is on the order of 10 -2 txsec for spheres of 1 ~m radius in glycol. The force 
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f ( t )  which is taken into account is a result of  a huge number of collisions. 
This approximation can be viewed as a coarse graining in time over a period 
<<6 but much greater than the time tc between collisions 5 or simply as being 
valid only when t >> to. Because many collisions, ~ t l / t c  >~ 10 l~ in a time 
interval q,  are responsible for producing a significant forcef(t) ,  we can assume 
that the Fourier components f~ o f f ( t )  are Gaussian distributed. In concrete 
terms, the probability distribution function o f f ( t )  is assumed to be given by 

P/ = Cr 1--[ e x p ( -  ]f~ol2/([f~o]2)) (5) 
fO 

where Cy is a normalization constant, the subscript oJ here and henceforth 
signifies the co Fourier component of the function subscripted, ( > represents 
a thermal average, and 1--I,o is a product over all frequencies oJ. Furthermore, 
by Fourier transforming Eq. (2), we obtain the relation 

v~0 = r o (6) 

Explicitly, 

~ = (1/6Try/R)[1 + 2 a ( - i w t l )  1/2 - iwt~] - ~ (7) 

From Eqs. (5) and (6) we obtain the probability distribution function of 
v(t): 

Pv = Cv 1--[ exp(-lvo~[2/<lv,o[2>) (8) 
O) 

where Cv is a normalization constant and 

<lvd=> = I~ ,?< l fd~>  (9) 

On the other hand, linear response theory (7~ predicts that 

<v(t)v(O)> = k T ~ ( l t l )  (10) 

[Note that the function ~b(t) is regarded as vanishing when t < 0.] By Fourier 
transforming Eq. (10), we obtain 

(]vo12> = 2kTRe  ~b~ (11) 

From Eqs. (9) and (11) we obtain the important relation 

<lf, ol~> -- 2kT Re(1/4o) (12) 

Equation (12) shows us that <lf0,]2> is uniquely determined by the macro- 
scopic, hydrodynamic viscous force, a point which has not always been 
recognized. 6 

5 The time to can be estimated as (molecular mass)al2/pR2(kT)ll2 = 10-ls-10-19 sec. 
6 This point had also previously been noted by Kubo. ~7~ [Note that the spectrum of 
f(t), <If, o[2>, is automatically white if the velocity autocorrelation function decays 
exponentially.] 
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An analysis similar to that  above leads to the following results for  the 
autocorrelat ion function o f  a componen t  f~(t) o f  the angular velocity o f  a 
sphere (s, 1 a): 

< n ( t ) n ( o ) )  = (kT/87rnR 3) ILT{[1 + 3(M0s) 1/2] 

x [1 + 3(atoS) 1/2 + -~6(1 + lOa)tos + -~9~/h(toS)af2]-~} (13) 

where 

to =- rn/6zr~lR = hi(1 + A) (14) 

is the characteristic time for velocity fluctuations in the limit that  p approaches 
zero. I f  we let I = 2mR2 be the momen t  o f  inertia of  the sphere, 

z0 -= �89 + /)/h] 1/2 

and  z~,,  be the three roots  of  the equat ion 7 

/ A \1/2z + 3 1 + lOhz2 + 9 ~/A 
1 + 3 ~ ] - - ~ )  10 1 +---------~ 10(1 + A) 3/2z3 = 0 

we have 

k T  f Im[z+w(- iz+~/z)]  
(~(t)a(0)) = -7- ( 1 - ~  

+ Zo + z_____. ~ Im z + w ( - i z + v / ' )  - z ~ w ( - i z ~ , ) ;  (15) 
Im  z+ z+ z~ ) 

Equat ions (4) and (15) and the fact that  [v~] 2 and [ ~ [ 2  are Gaussian 
distributed are all we need to proceed to calculate the M6ssbauer  spectrum. 

3. C A L C U L A T I O N  OF THE M O S S B A U E R  S P E C T R U M  

Let x(t)  be the displacement o f  the center o f  mass of  a sphere in a time t. 
Then the displacement o f  a M6ssbauer  nucleus located at the position r 
relative to the center o f  mass o f  the sphere is given to first order (which is 
adequate  to take into account  posit ion fluctuations) by 

x(t, r) = x(t)  + 0(t) • r (16) 

where 0(t) is the angular rotat ion of  the sphere in time t. I f  we now let n(r) be 
the density o f  M6ssbauer  nuclei at position r in a sphere, the M6ssbauer  

This equation is obtained from the denominator in Eq. (13) if we set z = (st1) lt2. In 
particular, when po = p, so that A = 1/2, zl = -1.341 and z• = -1.062 + 1.013i. 
We will henceforth assume that z~ are a pair of complex conjugate roots. 
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spectrum is given by ~15~ 

fo I(co) = (1/~r) dt cos(~ot) dr n(r)I(q, t, r) e x p ( -  rt /2)  (17) 
P 

where I" is the natural linewidth of the M6ssbauer y-ray, 

I(q, t, r) = (exp[iq-x(t, r)]) (18) 

where the symbol sp indicates that the integral is over the volume of a sphere 
and q is the wave vector of the M6ssbauer ~,-ray. 

Because the fluctuations of x(t) and tt(t) are independent, 

I(q, t, r) = (exp[iq.x(t)])(exp[iq.O(t)  X r]) (19) 

Because v(t) and ~( t )  are Gaussian distributed, so are x(t) and 0(t) Gaussian 
distributed, so that 

I (q ,  t, r) = exp[-q2<x(t)2)/2] ex p [ - (q  X r)2(O(t)2)/2] (20) 

where x( t )  and O(t) are the components of x(t) and O(t) along the directions 
q and q X r, respectively. 

We next relate (x ( t )  2) and (0(02)  to the velocity and angular velocity 
autocorrelation functions, respectively. From the relations 

f2 x( t )  = dt' v(t ') (21) 

and 

fo o(t) = dr" ~(C)  (22) 

and the stationarity of the ensemble [which gives us the relation 
(V(t + t ')v(t ')~ = (V(t)v(O))], we have 

and 

~x(t) 2) = 2 dt '  (t - t ')(v(t ')v(O)) (23) 

(O(t) 2) = 2 dt' (t - t ')(f2(t ')O(0)) (24) 

Using Eq. (B.5) of  Appendix B, we obtain 

(x(t)2) = 2Ot lr  312 sec 0 Im g(ie~~162 (25) 



212 L. Gunther  and J. Z i tkova-Wi leox 

and 

<0(t)2> = 2kTtl~'r3/2I Im z+ ( I m  g(z+V"O + (Zo + zl)  Im g(z+v/r)z+ - g(z~w/~');z~ ) 

(26) 

where D -- kT/6~r~TR is the translational diffusion constant and where 

g(z)  -- z -a[  - z 2 + w ( - i z )  - 1 - 2z /~/~l  (27) 

When t << q ,  

and 

( x ( t )  2) ~ (v(O)2)t 2 = k T t 2 / m  * (28) 

( O(t) 2) ,,~ {~)(0)2)t ~ = k T t 2 / I  (29) 

In the first case, Eq. (28), the only effect of the fluid on the particle in 
time t is that of the fluid dragged instantaneously by the particle due to the 
assumed incompressibility of the fluid. Equation (28) is valid (cf. discussion 
in the introduction) as long as rl/pcs 2 << t << h. In the second case, Eq. (29), 
there is no effect of the fluid on the particle for times t << t~. 

Asymptotically, as t ~ o% 

(v(  t )v(O) ) ~ (kTpl12/12)(rr~t ) - 3/z (30) 

and 

{s f2(0)) -+ (rrkTp3'2/32)(rrTlt)- sl2 (31) 

which contrasts sharply with the long-time, exponential behavior 
[ ~ e x p ( - 6 r r ~ R t / m )  and ~ e x p ( - 5 r r ~ l R t / 2 m ) ,  respectively] which obtains if 
we set 0 equa~ to zero in Eq. (1) and its counterpart for f2(t). 8 On the other 
hand, as t -+ 0% 

( x ( t )  2) -+ 2Dt l [ r  - 4a(r/,r) 1/2--. ] (32) 

and 

( 0 ( ' ) 2 ) ~ 4 ~ _  --6t~r  ) I t s )  - - I ~ 1  ] ' " }  (33) 

SO that acceleration memory effects die out relatively in these two quantities 
which determine the M6ssbauer spectrum, and we need to study time scales 
on the order of tl to see the effect of acceleration memory on the M6ssbauer 
spectrum. 

a The t -512 long-time behavior of (O(t)f~(0)) for the molecules of a molecular fluid was 
derived in Ref. 16. 
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We see from Eqs. (20), (32), and (33) that - l n  I(q, t, r) scales, for 
r ~ R, as/32 - Dq2tl multiplied by a function of ~- which becomes linear as 
r - +  or. Therefore, to see acceleration memory  effects in the M6ssbauer 
spectrum, it is best to have/3 on the order of  unity and, because of the ex- 
ponential time factor e x p ( -  I't/2), to have F < ti- 1. In addition, if we use a 
source of  M6ssbauer nuclei embedded in a solid and a suspension of Brownian 
particles as an absorber, it is very desirable to have I" << ti-1, so that the ob- 
served M6ssbauer absorption or transmission will directly give us the function 
I (w)  of  Eq. (17). This function I (w)  is determined by Eqs. (20), (25), (26), and 
(27) once n(r) and the basic parameters [cf. Appendix A] are known. When 
13 ~ 1 and 1 ~ << ti-1, I(~o) will be a function intermediate in character between 
a Gaussian and a Lorentzian and with a width on the order of  ti-1. 

A group from Tufts University and the National Magnet Laboratory  of  
M I T  are currently undertaking this experiment. 

APPENDIX A. A LIST OF RELEVANT PARAMETERS 

Below is a list of basic and derived parameters which are relevant in the 
M6ssbauer spectrum of a liquid suspension of spherical Brownian particles. 
The numbers following the definitions represent a sample set of  values which 
obtain when 1-/xm spheres containing Fe 57 are suspended in glycol (17~ at 
room temperature and Oo = p. 

Basic parameters 
R 

Po 

P 

T 

F 

E, 
es 

radius of  sphere, 1/xm 
mass density of  sphere, 1.11 g/cm 3 
mass density of  fluid, 1.11 g/cm a(17~ 
viscosity of  fluid, 19.9 cP (iv 
absolute temperature, 293~ 
natural linewidth of the M6ssbauer 7-ray, 0.71 x 107 sec -1 
energy of the M6ssbauer 7-ray, 14.4 keV 
speed of sound in fluid, 1.67 x 105 cm/sec ~17) 

Derived parameters 
m =- 4~'poR3/3; mass of sphere, 4.65 x 10-12 g 
I = 2mR2/5; moment  of  inertia of  sphere, 1.86 • 10 -20 g-cm 2 
D -- kT/6zr~R; translational diffusion constant, 1.08 • 10 - l~  cm2/sec 
tl = m(1 + p/2po)/6rr~R; characteristic time for velocity decay, 1.86 x 

10 -8 sec; the dynamical effects of  the fluid on the particle are 
negligible for time scales <<q; On the other hand, the effects of  
acceleration memory at a time scale >> tl do not significantly affect 
the M6ssbauer spectrum 
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q 

/3 -= 

l 

2~ / pc~ 2 

E / h c ;  magnitude of the wave vector of the M6ssbauer 7-ray, 
7.27 x 108 cm -1 
(Dq2h)112; a dimensionless parameter,  which if << 1, ~ 1, or >>1 
indicates that the velocity autocorrelation function in the time 
regime >> t~, ~ tl, or << h, respectively, will have the dominant effect 
on the M6ssbauer spectrum; ideally,/3 should be on the order of  
unity to study acceleration memory effects; 1.03 
2Dq 2, addition to the linewidth of the M6ssbauer spectrum when 
/3 << 1; the spectrum remains Lorentzian; 1.14 x 108 sec -1 
q(kT/2m*)~/2; qualitative addition to the linewidth of  the M6ss- 
bauer spectrum when 13 >> 1; the spectrum is given by Re x 
w[(~o - iP)/47']/(2~'X/~r), which becomes a Gaussian when P << y ' ;  
3.91 x 107 sec -1 
characteristic time such that for time scales greater than this time, 
the fluid may be regarded as incompressible; 1.29 x 10 - ~  sec 

A P P E N D I X  B. S O M E  PROPERTIES OF THE C O M P L E X  
ERROR FUNCTION w(z ) - -THE " F U N D A M E N T A L ' "  
FUNCTION OF THE T H E O R Y  

w(z) = (exp - z  2) 1 + (2i/~/~-) dt exp t 2 (B.1) 

w(z*) = w ( -  z*) (B.2) 

Re w(z = x) = exp - x  2 (B.3) 

dw/dz = - 2zw(z) + 2i/ ~/~r (B.4) 

oXdX ' w(~v/x ') = 1 - w(~/x)  + 2iv/x/a/~r (B.5) 

w(z) = ~ (iz)"/P(�89 + 1) (B.6) 
/ l = O  

w(z) = ~ z  1 + ~ (2z2)m 
m = I  

Relations (B.1)-(B.4) and (B.6) were taken directly from Ref. 14. 
Relation (B.7) follows straightforwardly f rom relation (7.1.23) of  Ref. 14 and 
is an asymptotic expansion. The relation (B.5), which follows from (B.4) 
should be compared (cf. body of paper) with the relation which holds for the 
corresponding function, exp - x ,  which is fundamental when the Langevin 
equation is adequate: 

f : d x '  - x '  = 1 - e x p ( - x )  (B.8) exp 
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